f(0) = 1
f '(x) = (u'v - uv')/v2 where u = 1, u' = 0, v = 1 - x, v' = -1, v2 = (1 - x)2
f '(x) = (0 - -1)/((1 - x)2 = 1/(1 - x)2 so f '(0) = 1
f ''(x) = (u'v - uv')/v2 where u = 1, u' = 0, v = (1 - x)2, v' = 2(1 - x)(-1) = 2x - 2, v2 = (1 - x)4
f ''(x) = (0 - (2x - 2))/(1 - x)4 = (2 - 2x)/(1 - x)4 = 2/(1 - x)3 so f ''(0) = 2
f '''(x) = (u'v - uv')/v2 where u = 2, u' = 0, v = (1 - x)3, v' = 3(1 - x)2(-1) = -3(1 - x)2, v2 = (1 - x)6
f '''(x) = (0 - 2((-3)(1 - x)2)/(1 - x)6 = 6/(1 - x)4 so f '''(0) = 6
A cubic can be written as P(x) = ax3 + bx2 + cx + d
P(0) = d and putting this together with f(0) above we get d = 1
P'(x) = 3ax2 + 2bx + c so P'(0) = c and putting this together with f '(0) above we get c = 1
P''(x) = 6ax + 2b and putting this together with f ''(0) above we get 2b = 2 or b = 1
P'''(x) = 6a and putting this together with f '''(0) above we get 6a = 6 so a = 1
P(x) = 1x3 + 1x2 + 1x + 1 or
P(x) = x3 + x2 + x + 1
John V.
Thank so much gentle sirs. May God bless you all!07/17/21