Yohannes B. answered 07/15/21
I am happy to provide quality tutoring service in math and physics
(cos(4x) - cos(2x))/2sin3x = - sin(x)
first work on Numerator
cos(4x) - cos(2x)
= cos(2(2x)) - cos(2x) => factoring cos4x into a double angle of 2x
= cos^2(2x) - sin^2(2x) - cos(2x) => cosine double angle
= cos^2(2x) - [1 - cos^2(2x)] - cos(2x)
= cos^2(2x) - 1 + cos^2(2x) - cos(2x) => write in terms of cos(2x)
= 2cos^2(2x) - cos(2x) - 1
let y = of cos(2x) then 2cos^2(2x) - cos(2x) - 1 becomes 2y^2 - y -1
2y^2 - y - 1 = 2y^2 - 2y + y -1
2y(y - 1) + (y - 1) = (2y + 1)(y - 1) => factoring the quadratic eq
= (2cos(2x) + 1)(cos(2x) - 1) substituting y = cos(2x)
= (2cos(2x) + 1)(cos(2x) + 1 - 2)
= (2cos(2x) + 1)(2cos^2(x) - 2)
= (2cos(2x) + 1)(2)(cos^2(x) - 1)
= (2cos(2x) + 1)(2)(-sin^2(x))
= -2(2cos(2x) + 1)(sin^2(x)) => Final Numerator
Now work on the Denominator
2sin3x = 2[sin(x + 2x)]
= 2[sin(x)cos(2x) + cos(x)sin(2x)] => expanding sin(x + 2x)
= 2sin(x)(cos(2x)) + 2cos(x)(2sin(x)cos(x)) => factoring out 2sin(x)
= 2sin(x)(cos(2x) + 2cos^2(x)) => from cos(2x) = 2cos^2(x) - 1
= 2sin(x)(cos(2x) + 1 + cos(2x))
= 2sin(x)(2cos(2x) + 1) => Final Denominator
=>[ -2(2cos(2x) + 1)(sin^2(x)) ] / [ 2sin(x)(2cos(2x) + 1)] => divide Final Numerator by Final Denominator
cancel like terms =>
(cos(4x) - cos(2x)) / 2sin3x = - sin(x)