Jean Paul L. answered 10/29/24
Psychology Enthusiast with Hands-On Experience in Mental Health
a. Groups Being Tested
The groups being tested are participants' self-efficacy in statistics and their life enjoyment levels.
b. Hypotheses
- Null Hypothesis (H0): There is no relationship between self-efficacy in statistics and life enjoyment (r = 0).
- Research Hypothesis (H1): There is a relationship between self-efficacy in statistics and life enjoyment (r ≠ 0).
c. Calculate Means
- Mean of X (Stats Self-Efficacy)
- Mean of X=10+9+10+11+2+10+11+10+9+1010=9210=9.2\text{Mean of X} = \frac{10 + 9 + 10 + 11 + 2 + 10 + 11 + 10 + 9 + 10}{10} = \frac{92}{10} = 9.2Mean of X=1010+9+10+11+2+10+11+10+9+10=1092=9.2
- Mean of Y (Life Enjoyment)
- Mean of Y=11+10+11+11+3+10+10+9+8+1110=10210=10.2\text{Mean of Y} = \frac{11 + 10 + 11 + 11 + 3 + 10 + 10 + 9 + 8 + 11}{10} = \frac{102}{10} = 10.2Mean of Y=1011+10+11+11+3+10+10+9+8+11=10102=10.2
d. Calculate Deviances
- Deviances for X (X - Mean of X)
- 10−9.2=0.810 - 9.2 = 0.810−9.2=0.8
- 9−9.2=−0.29 - 9.2 = -0.29−9.2=−0.2
- 10−9.2=0.810 - 9.2 = 0.810−9.2=0.8
- 11−9.2=1.811 - 9.2 = 1.811−9.2=1.8
- 2−9.2=−7.22 - 9.2 = -7.22−9.2=−7.2
- 10−9.2=0.810 - 9.2 = 0.810−9.2=0.8
- 11−9.2=1.811 - 9.2 = 1.811−9.2=1.8
- 10−9.2=0.810 - 9.2 = 0.810−9.2=0.8
- 9−9.2=−0.29 - 9.2 = -0.29−9.2=−0.2
- 10−9.2=0.810 - 9.2 = 0.810−9.2=0.8
- Deviances for Y (Y - Mean of Y)
- 11−10.2=0.811 - 10.2 = 0.811−10.2=0.8
- 10−10.2=−0.210 - 10.2 = -0.210−10.2=−0.2
- 11−10.2=0.811 - 10.2 = 0.811−10.2=0.8
- 11−10.2=0.811 - 10.2 = 0.811−10.2=0.8
- 3−10.2=−7.23 - 10.2 = -7.23−10.2=−7.2
- 10−10.2=−0.210 - 10.2 = -0.210−10.2=−0.2
- 10−10.2=−0.210 - 10.2 = -0.210−10.2=−0.2
- 9−10.2=−1.29 - 10.2 = -1.29−10.2=−1.2
- 8−10.2=−2.28 - 10.2 = -2.28−10.2=−2.2
- 11−10.2=0.811 - 10.2 = 0.811−10.2=0.8
e. Multiply Deviances
Now, multiply the corresponding deviances:
(0.8×0.8)=0.64=0.64=1.44=51.84=−0.16=−0.36=−0.96=0.44=0.64
(−0.2×−0.2)=0.04
(0.8×0.8)=.64
(1.8×0.8)=1.44
(−7.2×−7.2)=51.84
(0.8×−0.2)=-.16
(1.8×−0.2)=-.36
(0.8×−1.2)=-.96
(−0.2×−2.2) =.44
(0.8×0.8)=.64
f. Sum of Products
0.64+0.04+0.64+1.44+51.84−0.16−0.36−0.96+0.44+0.64=53.600.64 + 0.04 + 0.64 + 1.44 + 51.84 - 0.16 - 0.36 - 0.96 + 0.44 + 0.64 = 53.600.64+0.04+0.64+1.44+51.84−0.16−0.36−0.96+0.44+0.64=53.60
g. Calculate Sum of Squares
- Sum of Squares for X (SSx)
- SSx=0.64+0.04+0.64+3.24+51.84+0.64+3.24+0.64+0.04+0.64=62.80SSx = 0.64 + 0.04 + 0.64 + 3.24 + 51.84 + 0.64 + 3.24 + 0.64 + 0.04 + 0.64 = 62.80SSx=0.64+0.04+0.64+3.24+51.84+0.64+3.24+0.64+0.04+0.64=62.80
- Sum of Squares for Y (SSy)
- SSy=0.64+0.04+0.64+0.64+51.84+0.04+0.04+1.44+4.84+0.64=60.64SSy = 0.64 + 0.04 + 0.64 + 0.64 + 51.84 + 0.04 + 0.04 + 1.44 + 4.84 + 0.64 = 60.64SSy=0.64+0.04+0.64+0.64+51.84+0.04+0.04+1.44+4.84+0.64=60.64
h. Multiply SSx and SSy
SSx×SSy=62.80×60.64≈3804.032SSx \times SSy = 62.80 \times 60.64 \approx 3804.032SSx×SSy=62.80×60.64≈3804.032
i. Take the Square Root
3804.032≈61.69\sqrt{3804.032} \approx 61.693804.032≈61.69
j. Calculate Correlation Coefficient (r)
r=53.6061.69≈0.87r = \frac{53.60}{61.69} \approx 0.87r=61.6953.60≈0.87
k. Critical Value
For α = 0.05 and degrees of freedom df=n−2=10−2=8df = n - 2 = 10 - 2 = 8df=n−2=10−2=8:
- The critical value is approximately ±2.306 (check a t-table).
l. Decision
Since r≈0.87r \approx 0.87r≈0.87 is strong, you would reject the null hypothesis, indicating a significant relationship.
m. Magnitudes of Strength for Correlations
- Weak: 0.0 to 0.3
- Moderate: 0.3 to 0.7
- Strong: 0.7 to 1.0
n. Strongest Correlation
The strongest correlation from the options is C. -0.65 (since -0.65 is closer to -1 than the others are to 1).