Tom K. answered 05/15/21
Knowledgeable and Friendly Math and Statistics Tutor
I[0,a ]2 π f(x) √(1+(dy/dx)^2) dx
If (x/a)^(2/3) + (y/a)^(2/3) = 1,
(y/a)^(2/3) = 1 - (x/a)^(2/3), or
y = a(1 - (x/a)^(2/3))^(3/2)
dy/dx = -(x/a)^-1/3 (1 - (x/a)^(2/3))^(1/2), and
I[0,a f(x) √(1+(dy/dx)^2) dx =
2 π I[0, a] a(1 - (x/a)^(2/3))^(3/2) √1+ (x/a)^-2/3 (1 - (x/a)^(2/3)) =
2 π I[0, a] a(1 - (x/a)^(2/3))^(3/2) (x/a)^-1/3 dx =
-6 π a/5 (1 - (x/a)^(2/3))^(5/2) E[0, a] =
6 π a/5