Given: ๐ = 200 (๐๐ฅ/10 + ๐โ๐ฅ/10)
To find the minimum and maximum of the function T(x) in a given interval [-10,10] for x, first find the derivative of T and set it equal to zero.
T'(x) = 200(๐๐ฅ/10 - ๐โ๐ฅ/10) = 0
Factor out 1/10
20(๐๐ฅ- ๐โ๐ฅ) = 0
๐๐ฅ- ๐โ๐ฅ = 0
factor out ๐-๐ฅ:
๐-๐ฅ(๐2๐ฅ-1) = 0
Set each factor equal to zero:
๐-๐ฅ = 0 | ๐2๐ฅ-1=0
๐-๐ฅ = 0 has no real solution so:
๐2๐ฅ=1
2x = ln (1)
2x = 0
x = 0
plugin to the function T:
T = 200(e0/10 + e0/10)
T = 200(1/10 + 1/10)=200(1/5)
T = 40 N (minimum ).
T(x) is symmetric at y-axis. If xโโ or x โ-โ, then T(x)โโ. Therefore the maximum value of T(x) is at x=ยฑ10
T= 200(e10/10 + e-10/10)
Tโ 440,529.32 N (maximum)