
Mark M. answered 12/02/20
Mathematics Teacher - NCLB Highly Qualified
Demonstrate true for n = 1
6(1) + 1 = 1(3(1) + 4
7 = 7
Assume true for n = n
7+13+19+...+ 6n + 1 = n(3n + 1)
Demonstrate true for n
7+13+19+...+ 6n + 1 = n(3n + 1)
Demonstrate true for n + 1
7+13+19+...+ (6n + 1) + [6(n + 1) + 1] = n(3n + 1) + [6(n + 1) + 1]
7+13+19+...+ (6n + 1) + [6(n + 1) + 1]= 3n2 + n + 6n + 6 + 1
7+13+19+...+ (6n + 1) + [6(n + 1) + 1] = 3n2 + 7n + 7
7+13+19+...+ (6n + 1) + [6(n + 1) + 1] = (n + 1)(3n + 4)
7+13+19+...+ (6n + 1) + [6(n + 1) + 1] = (n + 1)(3(n + 1) + 1)
QED