Andrew S. answered 11/07/20
B.S. in Electrical Engineering
Hi Lily,
you can reduce these terms several ways, If the question is ok with having the 4x and 2x inside the cosine then you just need the following altered form of the half angle formula
sin2(∅) = (1/2)(1-cos(2∅))
cos2(∅) = (1/2)(1+cos(2∅))
3sin4(2x) - 2cos2(4x)
3sin2(2x)sin2(2x) - 2cos2(4x)
3[(1/2)(1 - cos(2*(2x)))(1/2)(1 - cos(2*(2x)))] - 2*[ (1/2)(1 + cos(4*(2x))) ]
(3/4) * (1 - cos(4x))(1 - cos(4x)) - (1 + cos(8x))
(3/4) * [1*1 - 1*cos(4x) - cos(4x)*1 + (cos(4x))2] - 1 - cos(8x)
3/4 - (3/4)*2cos(4x) + (3/4)cos2(4x) - 1 - cos(8x)
-1/4 - (3/4)*2cos(4x) + (3/4)(1/2)(1 + cos(4*2x)) - cos(8x)
-1/4 - (3/2)cos(4x) + (3/8)(1 + cos(8x)) - cos(8x)
-1/4 - (3/2)cos(4x) + 3/8 + (3/8)cos(8x) - (8/8)cos(8x)
-2/8 + 3/8 - (3/2)cos(4x) + (3/8)cos(8x) - (8/8)cos(8x)
1/8 - (3/2)cos(4x) - (5/8)cos(8x)
I may have missed a 2 or something, so please check my work. Let me know if you have other questions!