Given zero: x = -4 + i → x - (-4 + i) = 0
This comes in the conjugate pair.
x = -4 - i → x - (-4 - i) = 0
Distribute x and (-4 + i) to each term in the bracket:
[x - (-4 + i)]*[x - (-4 - i)] = x2 - x(-4 - i) - x(-4 + i) + [(-4 + i)*(-4 - i)]
= x2 + 4x - xi + 4x + xi + (16 + 4i - 4i - i2)
= x2 + 8x + (16 - i2)
= x2 + 8x + (16 + 1), where i2 = -1
= x2 + 8x + 17
By long division, we get:
(5x3 + 39x2 + 77x - 17) ÷ (x2 + 8x + 17) = 5x - 1
Zeros: x = 1/5, -4 + i, -4 - i