
Vivek S. answered 06/30/20
Science Teacher seeking curious minds
This should be solved through quadratic equation formula ===>
b +/- SqRT( b^2 - 4ac) / 2a.
Let x be length of rectangle.
Then width is (2x - 9)
Area of rectangle then becomes x(2x - 9) = 135
==> 2x^2 -9x - 135 = 0
With Formula for quadratic equation
x = ( -9 +/- SqRT( 81 - 4x2x-135) )/ 2x2
width = (2x -9) ===> (-9 +/- SqRT( 81 - 4x2x-135)) /2 - 9
diagonal = SqRT( x^2 + (2x -9)^2)
===> SqRT ( ( ( -9 +/- SqRT( 81 - 4x2x-135))/4)^2 + (( -9 +/- SqRT(81 - 4x2x-135))/2 )^2 )
Let (-9 +/- SqRT(81 - 4x2x-135) ) / 2 be a.
then diagonal is ==>
SqRT ( (a/2)^2 + a^2) ) = SqRT( a^2/4 +a^2) = 1/2 x SqRT(2)a
Solve.