Let u = 4t, then dv = sin(19t) dt => du = 4 dt and v = ∫sin(19t) dt = -1/19 cos(19t)
uv - ∫v du
= 4t(-1/19) cos(19t) - ∫-1/19 cos(19t) (4 dt)
= -(4/19) t cos(19t) + 4/19 ∫ cos(19t) dt
= -(4/19) t cos(19t) + 4/19(1/19) sin(19t)
= [-(4/19) π cos(19π) + 4/19(1/19) sin(19π)] - [-4/19 (0) cos(19(0)) + 4/19(1/19) sin(19(0))]
= [-(4/19) π (-1) + 4/19(1/19) (0)] - [0 + 0]
= 4π/19