Here's a derivation using the standard rules of inference and replacement along with conditional proof (denoted by vertical lines next to the step numbers). This is not the absolutely most efficient derivation (I used material equivalence on line 4 and then simplified in two different sub-proofs when I could have done it once outside the subproofs), but the best one is only going to be a bit shorter.
If you are using Fitch or SD then I would have to provide a completely different derivation using those rules.
If you're interested in doing some lessons, let me know.
1. D→(A∨¬C)
2. ¬B→(D∨C)
3. ¬A→¬(B∧C)
4. (B∨D)↔C .............. /A
5. | B..........................ACP
6 | B v D.....................Add 9
7 | [(B∨D) →C] ∧ [C →(B∨D)] ME 4
8 | (B∨D) →C..............Simp 7
9 | C.............................MP 6, 8
10| B∧C.......................Conj. 5, 9
11| ¬¬(B∧C).................DN 10
12| ¬¬A........................MT 3, 11
13| A ...........................DN 12
14 B→A......................CP 5-13
15| ¬B...........................ACP
16| (D v C).....................MP 2, 15
17|| D............................ACP
18|| D ∨ B....................,Add 17
19|| B∨D.......................Comm 18
20|| [(B∨D) →C] ∧ [C →(B∨D)] ME 4
21|| [(B∨D) →C..............Simp 20
22|| C..............................MP 19, 21
23|| ¬¬C..........................DN 22
24|| A v ¬C......................MP 1, 17
25|| A...............................DS 23, 24
26| D → A........................CP 17-25
27|| C...............................ACP
28|| (B∨D) →C] ∧ [C →(B∨D)] ME 4
29|| C →(B∨D).................Simp 28
30|| B v D.........................MP 27, 29
31|| D...............................DS 15, 30
32|| A................................MP 26, 31
33| C→A............................CP 27-32
34| (D→A) ∧ (C → A)........Conj 26, 33
35| (D v C) →(A v A)..........CD 34
36| A v A...........................MP16, 35
37| A.................................Taut 36
38 ¬B →A..........................CP 15-37
39 (¬B →A) ∧ (B →A)........Conj 14, 38
40 (¬B v B) →(A v A)..........CD 39
41 | B..................................ACP
42 | B v B............................Taut 41
43 | B..................................Taut 42
44 B→B..............................CP 41-43
45 ¬B v B...........................MI 44
46 A v A.............................MP40, 45
47 A...................................Taut 46 QED
David F.
05/11/20
Milagros O.
He is requesting the usage of predicate logic ++, I'm currently working on QL logic but have to show how to use the rules, such as, AEL, for Universal Elimination, EEL, EIN, =IN, etc.. not sure what that format is called. Thank you for the above info, It's still not what I'm looking for though.05/11/20