Hi Lavi!
All linear transformations will satisfy two properties:
- T(u + v) = T(u) + T(v)
- T(c*u) = c*T(u)
The first property gives us the extra fact that T(0) = 0 for all linear transformations T. This helps with the first one. There T(0) = T( (0,0) ) = (0,1) != 0. So 1-T cannot be linear. But the second satisfies T(0) = 0, so we'll need more work for that one.
The two properties above actually suffice to show that a transformation is linear.
Shown below is proof they apply to 2-T.
T( u + v ) = T( (u1,u2,u3) + (v1,v2,v3) )
= T( (u1 + v1, u2 + v2, u3 + v3) )
= ( (u1 + v1) + (u2 + v2), (u1 + v1) - (u2 + v2), u3 + v3)
= ( (u1 + u2) + (v1 + v2), (u1 - u2) + (v1 - v2), u3 + v3)
= ( (u1 + u2), (u1 - u2), u3 ) + ( (v1 + v2), (v1 - v2), v3 )
= T( (u1, u2, u3) ) + T( (v1, v2, v3) )
= T(u) + T(v), and
T(c*u) = T(c*(u1, u2, u3))
= T( (c*u1,c*u2,c*u3)
= ( (c*u1 + c*u2), (c*u1 - c*u2), c*u3 )
= ( c*(u1 + u2), c*(u1 - u2), c*u3 )
= c*( (u1 + u2), (u1 - u2), u3 )
= c*T(u).
So 2-T satisfies both properties, and is therefore a linear transformation.
Note that 1-T satisfies the first property, as shown below:
T( u + v ) = T( (u1,u2) + (v1,v2) )
= T(u1 + v1, u2 + v2)
= (u1 + v1, 0)
= (u1, 0) + (v1, 0)
= T(u1, u2) + T(v1, v2)
= T(u) + T(v), but
T(c*u) = T(c*(u1, u2))
= T(c*u1, c*u2)
= (c*u1, 1) which only equals c*T(u) = c*T(u1, u2) = c*(u1, 1) = (c*u1, c) if c=1.
This second property is where 1-T failed to be a linear transformation.
Hope this helps. I'll be glad to update this to make it clearer, so I'd appreciate any feedback. Thank you!