
Marco S. answered 02/21/25
Passionate Tutor in Math, Physics, and Test Preparation with SAT
Given:
(x0,y0) = (0, 0) with Moment M0 = G
(x1,y0) = (1, 2) with Moment M1 = 2G
(x2,y2) = (2, 5) with Moment M2 = 4G
Since M=FR•d, we set up the moment equations:
M0 = G = FR⋅d0,
M1 = 2G = FR•d1,
M2 = 4G = FR•d2.
We can now relate d0 to d1 and d2:
Dividing M1 by M0:
2G = FR•d0 => d1 = 2d0
G FR•d1
Dividing M2 by M0:
4G = FR•d0 => d2 = 4d0
G FR•d2
Now, using the perpendicular distance formula for a point (x,y) from a general line Ax+By+C=0,
d = |Ax + By + C|
√A2+B2
and using the given points (0,0), (1,2), and (2,5), set up the three equations:
- d0 = |A(0) + B(0) + C| = |C|
√A2 + B2 √A2 + B2
- d1 = |A(1) + B(2) + C| = |A + 2B + C|
√A2 + B2 √A2 + B2
- d2 = |A(2) + B(5) + C| = |2A + 5B + C|
√A2 + B2 √A2 + B2
Since d1=2d0 and d2=4d0, divide the equations:
d0 = |C| = 1 => C = A + 2B
d1 |A + 2B + C| 2
d0 = |C| = 1 => C = 2A + 5B
d1 |2A + 5B + C| 4 3 3
d1 = |A + 2B + C| = 1 => |2A + 4B + 2C| = |2A + 5B + C|
d2 |2A + 5B + C| 2
Cancel A in the third equation:
|2A + 4B + 2C| = |2A + 5B + C|
C = B
Plugging into C = A + 2B:
C = A + 2C
C = -A
Thus, A = −C and B = C. The equation of the resultant line is:
(−C)x + (C)y + C = 0
C(y - x + 1) = 0
Dividing both sides by C, since C ≠ 1:
y = x - 1
For the resultant force, express d0 using the perpendicular distance formula:
d0 = |C| = |C| = |C| = |C| = 1
√A2 + B2 √(-C)2 + (C)2 √(2C2) C√2 √2
Since M0 = FR•d0:
G = FR(1/√2)
FR = G√2
The final results are:
Resultant Force: FR = G√2
Resultant Line Equation: y = x - 1