
Daniel M. answered 01/07/20
Higher Education Chemistry & Math Tutor with 6+ Years Experience
We can answer this question using a system of equations:
The object is to turn the statements into equations using variables. The first statement, 'The sum of two numbers is 57' is an addition problem which can be represented by the equation:
x + y = 57
'the difference is 19'. This 2nd statement is, of course, referring to the same two numbers, which we have already defined as variables x and y, and is the subtraction of these variables. We can represent this statement with the equation:
x – y = 19
Now, there are a number of different methods that can be used to solve this system of equations. One method that comes to mind is, rewrite the first equation so y is by itself on one side of the equal sign like so:
x + y = 57 ⇒ y = 57 – x
Then, substitute this equation for y into the 2nd equation like so:
x – y = 19 ⇒ x – (57 – x) = 19
After making the substitution, we can see that the new equation is now only in terms of one unknown variable, x, which we can simplify and solve:
x – (57 – x) = 19 ⇒ x – 57 + x = 19 ⇒ 2x – 57 = 19 ⇒ 2x = 76
⇒ x = 38
Lastly, we can now plug in this x-value into either of the two equations and solve for y:
x + y = 57 ⇒ (38) + y = 57 ⇒ y = 57 – 38 ⇒ y = 19
As a final check, we can plug these two values into both equations to make sure they are true:
x + y = 57 and x – y = 19
(38) + (19) = 57 True
(38) – (19) = 19 True