In polar form, (1-i) = √2(cos315° + isin315°)
So, by DeMoivre's Theorem, (1-i)10 = (√2)10(cos3150° + isin3150°) = 32(cos3150° + isin3150°)
In polar form, (√3 + i) = 2(cos30° + isin30°)
So, (√3 + i)5 = 25(cos150° + isin150°) = 32(cos150° + isin150°)
In polar form, (-1-√3i) = 2(cos240° + isin240°)
So, (-1-√3i)10 = 210(cos2400° + isin2400°) = 1024(cos2400° + isin2400°)
Therefore, using DeMoivre's Theorem, the original expression is equivalent to :
(32)(32)[cos3300° + isin3300°] / [1024(cos2400° + isin2400°)]
= cos(3300°-2400°) + isin(3300°-2400°) = cos900° + isin900° = cos180° + isin180° = -1