Roger N. answered 06/06/19
. BE in Civil Engineering . Senior Structural/Civil Engineer
Prove (sec(x)+1)/(sec(x)-1) = cot2(x/2)
substitute sec x = 1/ cos x
( 1/cos(x) + 1) / (1 /cos(x) -1) , add the fractions in each side and you get
( ( 1+ cos(x) / cos(x)) / ( ( 1- cos(x) / cos(x)) = [(1+ cos(x) / cos(x))] .[ cos(x) / 1- cos ( x))] = 1+cos(x) / 1-cos(x)
From trigonometric identities tan( x/2) = ±√1+cos(x) / 1-cos(x) , square both sides
tan2 ( x/2) = 1+cos(x) / 1-cos(x) , if cot(x) = 1/ tan(x), then cot2 ( x/2) = 1/ tan2(x/2)
and cot2 ( x/2) = 1 / [ 1+cos(x) / 1-cos(x)] = 1- cos(x) / 1+ cos(x) = (sec(x)+1)/(sec(x)-1)