How do you solve 10y^{2}+45y-25? Thank you!

The first step is to set the equation to zero.

10y^2 + 45y - 25 = 0

Next you extract the common factors.

10y^2 + 45y - 25 = 5(2y^2 + 9y - 5)

2y^2 + 9y - 5 = 0

a = 2, b = 9, c = -5

Discriminant: d = b^2 - 4*a*c = 9^2 - 4*2*(-5) = 81 + 40 = 121

Quadratic Formula: y = [-b +/- sqrt(d)]/2*a

In this case

y = [-9 +/- sqrt(121)]/2*2 = (-9 +/- 11)/4 = -5 or 1/2

y = -5 --> y + 5 = 0

y = 1/2 --> y - 1/2 = 2y - 1 = 0