
Francisco P. answered 10/18/14
Tutor
5.0
(297)
Rigorous Physics Tutoring
uxx + uyy = 0
Let u(x,y) = X(x)Y(y), then
YXxx + XYyy = 0 or YXxx = -XYyy.
Separating variables, Yyy / Y = -Xxx / X = k2.
We get Yyy = k2Y and Xxx = -k2X
Yk(y) = Akcosh(ky) + Bksinh(ky)
Xk(x) = Ckcos(kx) + Dksin(kx)
u(x,y) = ΣXk(x)Yk(y)
= Σ[Ckcos(kx) + Dksin(kx)][Akcosh(ky) + Bksinh(ky)]
On the boundary, x = ±√(1 - y2) and u(x,y) = x2y = (1 - y2)y.
Since x2y is even in x and odd in y, u(x,y) = ∑Ekcos(kx)sinh(ky).
Find the constants--Ek--for
(1 - y2)y = ∑Ekcos(k√(1 - y2))sinh(ky)
Tiara S.
10/21/14