f(t) = tcos(t)
To find the third derivative, apply the Product Rule each time:
f '(t) = cos(t) - tsin(t)
f ''(t) = -sin(t) - sin(t) - tcos(t) = -2sin(t) - tcos(t)
f '''(t) = -2cos(t) - cos(t) + tsin(t) = -3cos(t) + tsin(t)
Evaluate f ''' at t=0:
f '''(0) = -3cos(0) + (0)sin(0) = -3