
Steve S. answered 04/08/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
sum of a and b is 1, find a^3 + b^3
options:
1) 1 2)0 3) 3 4)none of these
a+b=1
(a+b)^3 = 1
Pascal’s Triangle
1
1 1
1 2 1
1 3 3 1 <== coefficients for binomial expansion
1^3 = (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = 1
a^3 + b^3 = 1 - 3a^2b - 3ab^2
a^3 + b^3 = 1 - 3ab(a + b) = 1-3ab(1)
a^3 + b^3 = 1-3ab = 1-3a(1-a) = 3a^2-3a+1
if 1 = 1-3ab, ab=0, so a or b is 0
So answer 1 works if ab=0.
if 0 = 3a^2-3a+1
(-3)^2-4(3)(1) < 0 ==> a imaginary
if 3 = 3a^2-3a+1
3a^2-3a-2=0
(-3)^2-4(3)(-2)=33
a=(3±√(33))/6
b=1-a=6/6-3/6±(-1)√(33)/6
b=(3±(-1)√(33))/6
a+b = ((3+√(33))/6)+((3–√(33))/6)=1/2+1/2=1 √
a^3+b^3 = ((3+√(33))/6)^3+((3–√(33))/6)^3
= (1/2)^3+3(1/2)^2(√(33))/6)+3(1/2)(√(33))/6)^2+(√(33))/6)^3
+(1/2)^3+3(1/2)^2(-√(33))/6)+3(1/2)(-√(33))/6)^2+(-√(33))/6)^3
= 2(1/2)^3+6(1/2)(√(33))/6)^2
= 1/4+3(33)/36 = 1/4+(11)/4 = 12/4 = 3 √
So answer 3 works if a = (3+√(33))/6 and b = (3–√(33))/6
So both answers 1 and 3 are correct.
options:
1) 1 2)0 3) 3 4)none of these
a+b=1
(a+b)^3 = 1
Pascal’s Triangle
1
1 1
1 2 1
1 3 3 1 <== coefficients for binomial expansion
1^3 = (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = 1
a^3 + b^3 = 1 - 3a^2b - 3ab^2
a^3 + b^3 = 1 - 3ab(a + b) = 1-3ab(1)
a^3 + b^3 = 1-3ab = 1-3a(1-a) = 3a^2-3a+1
if 1 = 1-3ab, ab=0, so a or b is 0
So answer 1 works if ab=0.
if 0 = 3a^2-3a+1
(-3)^2-4(3)(1) < 0 ==> a imaginary
if 3 = 3a^2-3a+1
3a^2-3a-2=0
(-3)^2-4(3)(-2)=33
a=(3±√(33))/6
b=1-a=6/6-3/6±(-1)√(33)/6
b=(3±(-1)√(33))/6
a+b = ((3+√(33))/6)+((3–√(33))/6)=1/2+1/2=1 √
a^3+b^3 = ((3+√(33))/6)^3+((3–√(33))/6)^3
= (1/2)^3+3(1/2)^2(√(33))/6)+3(1/2)(√(33))/6)^2+(√(33))/6)^3
+(1/2)^3+3(1/2)^2(-√(33))/6)+3(1/2)(-√(33))/6)^2+(-√(33))/6)^3
= 2(1/2)^3+6(1/2)(√(33))/6)^2
= 1/4+3(33)/36 = 1/4+(11)/4 = 12/4 = 3 √
So answer 3 works if a = (3+√(33))/6 and b = (3–√(33))/6
So both answers 1 and 3 are correct.