Given: f(0) = 6 f(1) = 10
f'(0) = 4 f'(1) = 11
Let u = f(x), then du = f'(x)dx When x = 0, u = f(0) = 6 and when x = 1, u = f(1) = 10
a. So, ∫from 0 to 1 sin(f(x) f'(x)dx = ∫from 6 to 10 sinudu = -cosu from 6 to 10
= -(cos10 - cos6)
= cos6 - cos10
b. Let u = cosx. Then du = -sinxdx. So, sinxdx = -du
When x = 0, u = cos0 = 1 and when x = π/2, u = cos(π/2) = 0
∫from 0 to π/2 sinxf'(cosx)dx = ∫from 1 to 0 f'(u)(-du)
= ∫from 0 to 1f'(u)du = f(u)from 0 to 1
= f(1) - f(0) = 10 - 6 = 4