
Steve S. answered 02/27/14
Tutoring in Precalculus, Trig, and Differential Calculus
1.) (x-5)/(-3) = 4/(x+3)
2.) (x+5)/(-3) = 4/(x+2)
1.)
(x-5)/(-3) = 4/(x+3)
Can’t divide by zero, so x ≠ -3.
Multiply by -3(x+3)
(x-5)(x+3) = -12
x^2 - 2x - 15 = -12
x^2 - 2x - 3 = 0
(x - 3)(x + 1) = 0
x = -1, 3
Check:
((-1)-5)/(-3) =? 4/((-1)+3)
2 = 2 √
((3)-5)/(-3) =? 4/((3)+3)
2/3 = 2/3 √
2.)
(x+5)/(-3) = 4/(x+2)
Can’t divide by zero, so x ≠ -2.
Multiply be -3(x+2):
(x+5)(x+2) = -12
x^2 + 7x + 10 = -12
x^2 + 7x + 22 = 0
b^2 - 4ac = 49-88 = -39 < 0,
so there will be two complex conjugate roots.
x = (-7 ± i√(39))/2
check:
(((-7 ± i√(39))/2)+10/2)/(-3) =? 4/(((-7 ± i√(39))/2)+4/2)
(-3 ± i√(39))/6 =? 8(3 ± i√(39))/((3 ± i√(39))(-3 ± i√(39)))
(-3 ± i√(39))/6 =? 8(3 ± i√(39))/(-9 - 39)
(-3 ± i√(39))/6 =? 8(3 ± i√(39))/(-48)
(-3 ± i√(39))/6 = (-3 ± i√(39))/6 √