
Ethan E. answered 06/10/16
Tutor
New to Wyzant
Macalester College B.S. Student; Math & English Tutor
This can be kind of tricky so let's go through this step-by-step.
1. Let's start by isolating y' on the left side of the equation.
xy'=y+xe^(9y/x)
xdy/dx = y + xe^(9y/x)
dy/dx =y/x + e^(9y/x)
xdy/dx = y + xe^(9y/x)
dy/dx =y/x + e^(9y/x)
2. Next, let's rearrange
let v = y/x
y=vx
If v = y/x then
y = vx and y ' = v+ xv ' (chain rule) and now substitute in y ' = (y/x)+ e^(y/x) you get
v+ xv ' = v + e^v
so
v+ xv ' = v + e^9v
y = vx and y ' = v+ xv ' (chain rule) and now substitute in y ' = (y/x)+ e^(y/x) you get
v+ xv ' = v + e^v
so
v+ xv ' = v + e^9v
3. Next lets simplify our equation and make it more manageable.
v+ xv ' = v + e^9v
v - v +xv'=e^(9v)
xv' = e^(9v)
xdv = e^(9v)dx
v - v +xv'=e^(9v)
xv' = e^(9v)
xdv = e^(9v)dx
4. Now let's integrate!
dv...........dx
∫--------- =∫ ----------
..e^(9v)..........x
...................dx
∫ e^(-9v)dx =∫ ----------
....................x
∫--------- =∫ ----------
..e^(9v)..........x
...................dx
∫ e^(-9v)dx =∫ ----------
....................x
and/or
v'e^-9v = 1/x
(e^-9v) ' = 1/x
(e^-9v) ' = 1/x
-9e^(-v) = ln(x) +C
e^(-v) = - 1/9[ln(x) + C]
Now let's substitute back for v=y/x
e^(-y/x)= - ln(x) - C
-y/x = ln[-ln(x) - C]
y=-1/9xln(9[-ln(x) -C])
Now let's substitute back for v=y/x
e^(-y/x)= - ln(x) - C
-y/x = ln[-ln(x) - C]
y=-1/9xln(9[-ln(x) -C])