Michael L. answered 02/17/16
Tutor
New to Wyzant
Intuitively explains the concepts in Math and Science
Hi Edona,
sum from 3 to ∞
∑n=3 ∞ 2/[(n+2)(n-1)]
Use partial fraction methods to split the fraction.
2/[(n+2)(n-1)] = A/(n +2) + B/(n-1)
2 = A(n-1) + B (n+2)
If n = 3, 2 = 2A + 5B
If n =4, 2 = 3A + 6B
A= -2/3, B =2/3
2/[(n+2)(n-1)] = (-2/3)/(n+2) + (2/3)/(n-1)
=(2/3)[1/(n-1) - 1/(n +2)]
Expand the first few
∑2/[(n+2)(n-1)] = (2/3){[1/2 -1/5] + [1/3-1/6]+[1/4-1/7]+[1/5-1/8] +[1/6-1/9]+[1/7-1/10]+[1/8-1/11]+[1/9-1/12]+[1/10-1/13] +[1/11-1/14] + [1/12-1/15]+[1/13-1/16]+[1/14-1/17]+ ...
= (2/3)[1/2+1/3+1/4 + 0 + 0 + 0 + ...]
=(2/3)[13/12]
∑2/[(n+2)(n-1)] = 13/18