l A l = A if A ≥ 0 and l A l = -A if A < 0.
-x2+4x-5 = -[x2-4x+5] = -[x2-4x+4+1] = -[(x-2)2+1]
< 0 for all x
So, l-x2+4x-5l = -(x2+4x-5) for x ε (-∞,∞).
------------------------------------------------------------------------------------
If x < -3, then x < 0 and x + 3 < 0, so lxl + lx+3l = -x + -(x+3)
= -2x - 3
If -3 ≤ x < 0, then x+3 > 0 and x < 0, so lxl + lx+3l = -x + x + 3
= 3
If x ≥ 0 , then x + 3 > 0, so lxl + lx+3l = x + x + 3 = 2x + 3