Mark M. answered 12/29/15
Tutor
4.9
(954)
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
Using u-substitution, let u = tx+k. Then du = tdx. So, dx = (1/t)du.
Substituting into the integral: ∫dx/(tx+k) = ∫(1/t)du/u
= (1/t)∫du/u
= (1/t)ln l u l + C
= (1/t)ln l tx+k l + C