Divide.Assumed that all variables are nonzero,Its a polynomial question .dividing polynomial

35x^9y^10

--------------

5x^8y^3

Can you kindly work this out for me

Polynomial questions..................

Divide.Assumed that all variables are nonzero,Its a polynomial question .dividing polynomial

35x^9y^10

--------------

5x^8y^3

Divide.Assumed that all variables are nonzero,Its a polynomial question .dividing polynomial

35x^9y^10

--------------

5x^8y^3

Tutors, sign in to answer this question.

John M. | John - Algebra TutorJohn - Algebra Tutor

1) Since this fraction is all mutiplication, you can factor the top and bottom so that parts of the fraction will cancel.

if you write it this way:

(35)(x^9)(y^10)

----------------------

(5)(x^8)(y^3)

you can reduce the fraction to:

(7)(x)(y^7)

2) and 3)... simply apply the normal mathematical principles and rearrange to solve. So that:

----------- = 15x^8

3x^6

becomes

15x^8(3x^6) = ________

then do the multiplication... 45x^14

For #1:

To be precise, this is not a polynomial. Polynomial have monomials added together arranged in descending degrees for their variables. This is called a rational expression. What you should do to simplify it, is to just cancel the powers of similar variables on the top and bottom. Factor the numbers top and bottom out to prime numbers and then you can cancel any numbers that are the same. Each power of any variable that is the same, can cancel out exactly one of the powers of that variable on the other side of the faction bar. In effect the variable with the smaller power can subtract that power from the larger one.

So we have:

35 times x to the 9th power times y to the 10th power

OVER

5 times x to the 8th power times y to the 3rd power.

State 35 as 5 times 7. Bring the bottom powers up and subtract them from the top powers:

5 times 7 times x to the (9 - 8) times y to the (10 - 3)

OVER

5

Cancel the 5s on the top and the bottom and clean everything up we get:

7xy^7

In words: 7 times x times y to the 7th power.

Sorry. I can't read your one and two questions. Please try to write them out in English, as I have done above.

Already have an account? Log in

By signing up, I agree to Wyzant’s terms of use and privacy policy.

Or

To present the tutors that are the best fit for you, we’ll need your ZIP code.

Your Facebook email address is associated with a Wyzant tutor account. Please use a different email address to create a new student account.

Good news! It looks like you already have an account registered with the email address **you provided**.

It looks like this is your first time here. Welcome!

To present the tutors that are the best fit for you, we’ll need your ZIP code.

Please try again, our system had a problem processing your request.