Mark M. answered 10/14/15
Tutor
4.9
(954)
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
limx→0.5[(2x-1)/ l2x3-x2l ]
= limx→0.5 [ (2x-1)/(x2 l2x-1l) ]
When x>0.5, 2x-1>0, so l 2x - 1 l = 2x - 1
When x < 0.5, 2x-1<0, so l 2x - 1 l = -(2x - 1)
Therefore, limx→0.5- [ (2x-1)/(x2 l2x-1l ]
= limx→0.5- [(2x-1)/(x2(-(2x-1)))] = limx→0.5- (-1/x2) = -4
and limx→0.5+ [(2x-1)/(x2 l2x-1l)]
= limx→0.5 + [(2x-1)/(x2(2x-1)) ] = limx→0.5 + (1/x2) = 4
Since the one-sided limits are not the same, the given limit does not exist.