Arthur D. answered 09/29/15
Tutor
5.0
(257)
Forty Year Educator: Classroom, Summer School, Substitute, Tutor
strongest in 1, pitcher in 6
strongest in 4, pitcher in 6
strongest in 1, pitcher in 9
strongest in 4, pitcher in 9
you have 7 players left to be put in 7 possible positions
player 3 goes in 1 of 7 positions
player 4 goes in 1 of 6 positions
player 5 goes in 1 of 5 positions
player 6 goes in 1 of 4 positions
player 7 goes in 1 of 3 positions
player 8 goes in 1 of 2 positions
player 9 goes in 1 of 1 position left
7*6*5*4*3*2*1=5040 batting orders for each of the 4 scenarios above
4*5040=20,160 possible batting orders
the simplest thing to do is the following...
(strongest in 1 of 2)*(pitcher in 1 of 2)*7*6*5*4*3*2*1
2*2*7*6*5*4*3*2*1=20,160 batting orders
if it did not matter who went where the answer would be...
9*8*7*6*5*4*3*2*1=362,880 batting orders but you put conditions on the pitcher and the strongest batter