Roman C. answered 07/02/13
Masters of Education Graduate with Mathematics Expertise
Use integration by parts twice: ∫ u dv = uv - ∫ v du.
First iteration: u = 2et/2, du = et/2 dt, dv = cos t dt, v = sin t.
I = ∫ 2et/2 cos t dt = 2et/2 sin t - ∫ et/2 sin t dt = 2et/2 - J.
Second iteration: u = et/2, du = (1/2)et/2 dt, dv = sin t dt, v = -cos t.
J = ∫ et/2 sin t dt = -et/2 cos t - ∫ (-1/2)et/2 cos t dt = -et/2 cos t + I/4.
Substitute and solve
I = 2et/2 sin t + et/2 cos t - I/4
5I/4 = et/2(2sin t + cos t)
I = (4/5)et/2(2sin t + cos t)
Hence ∫ 2et/2 cos t dt = (4/5)et/2(2sin t + cos t) + C