I got as far as plane speed + wind = 158 and plane speed - wind = 112.

But I don't know how to solve the problem.

I got as far as plane speed + wind = 158 and plane speed - wind = 112.

But I don't know how to solve the problem.

Tutors, please sign in to answer this question.

You need to name variables for plane speed and wind speed. For example, I will name them:

x = Plane speed

y = Wind speed

Now you can create two equations in two variables

x + y = 158

x - y =112

This is a good problem for elimination method since you already have one equation with positive y and the other with negative y

x + y = 158

x - y = 112

2x = 270

x = 135

Now substitute the value into either equation to solve for y

x + y - 158

135 + y = 158

y = 23

Timothy R.

Top Mathematics and Physics Tutor | Flexible

Avenel, NJ

4.8
(137 ratings)

Dana R.

English/Math SAT PrepTutor with PhD

Lynbrook, NY

4.8
(85 ratings)

Christopher A.

Tutor Expert in ACT, SAT, Math, Writing, Excel, Study Skills and More

Far Rockaway, NY

5.0
(611 ratings)

## Comments

I used this method on another problem and I'm getting two different answers.

A small jet plane whose speed in still air is 220 km/h can travel 520 km with the wind in the same amount of time as it takes to fly 360 km against the wind. What is the wind speed?

I get (220+ 360)/2 = 70. But if I use John's method.

I get wind speed is 80.

220t +w = 520 and 220t -2 = 360. Using elimination method I get 440t =880

t=2. Then substitute into eq 1 and get 220(2) +w = 520 2 = 80

So which is right?

Wind speed is 40 km/h; total trip time 880 km/ 220 km/h= 4hours.

2 hours each leg==> 520/2= 260 km/h with 40 wind boost; 360/2= 180 km/h against same wind of 40 :)

Wind speed is 40 km/h; total trip time 880 km/ 220 km/h= 4hours.

2 hours each leg==> 520/2= 260 km/h with 40 wind boost; 360/2= 180 km/h against same wind of 40 :)