I need to solve 2sin(x) = -1/2 for x ∈ [0, 4π].
Step 1: Isolate sin(x)
Divide both sides by 2: sin(x)=−14sin(x)=−41
Step 2: Find the reference angle
I need to find where sin(x) = -1/4. Let me find the reference angle: α=arcsin(14)≈0.2527α=arcsin(41)≈0.2527 radians (or about 14.48°)
Step 3: Determine which quadrants
Since sin(x) is negative, x must be in:
-
Quadrant III or Quadrant IV
Step 4: Find solutions in [0, 2π]
For one period [0, 2π]:
-
Quadrant III: $x_1 = \pi + \alpha = \pi + \arcsin\left(\frac{1}{4}\right) \approx 3.394$ radians
-
Quadrant IV: $x_2 = 2\pi - \alpha = 2\pi - \arcsin\left(\frac{1}{4}\right) \approx 6.030$ radians
Step 5: Find all solutions in [0, 4π]
Since the sine function has period 2π, I need to add 2π to each solution:
First period [0, 2π]:
- $x_1 = \pi + \arcsin\left(\frac{1}{4}\right)$
- $x_2 = 2\pi - \arcsin\left(\frac{1}{4}\right)$
Second period [2π, 4π]:
- $x_3 = \pi + \arcsin\left(\frac{1}{4}\right) + 2\pi = 3\pi + \arcsin\left(\frac{1}{4}\right)$
- $x_4 = 2\pi - \arcsin\left(\frac{1}{4}\right) + 2\pi = 4\pi - \arcsin\left(\frac{1}{4}\right)$
Final Answer
The four solutions are: x=π+arcsin(14),2π−arcsin(14),3π+arcsin(14),4π−arcsin(14)x=π+arcsin(41),2π−arcsin(41),3π+arcsin(41),4π−arcsin(41)
Or approximately: x≈3.394,6.030,9.678,12.313 radiansx≈
Doug C.
desmos.com/calculator/chnfk5ttnv05/17/25