
Kia A. answered 10/04/24
EIT, MS Mechanical Engineer-Physics-Algebra-Chemistry-Calculus -FE!
Given Point
The given point is (8, -3√5).
Calculating the Radius
The radius r is calculated using the formula:
r = √(x² + y²)
Substituting the values:
r = √(8² + (-3√5)²)
r = √(64 + 45) = √(109)
Trigonometric Ratios
1. Sine (sin):
sin(Q) = y/r = (-3√5)/√(109)
2. Cosine (cos):
cos(Q) = x/r = 8/√(109)
3. Tangent (tan):
tan(Q) = y/x = (-3√5)/8
4. Cosecant (csc):
csc(Q) = r/y = √(109)/(-3√5) = -√(109)/(3√5)
5. Secant (sec):
sec(Q) = r/x = √(109)/8
6. Cotangent (cot):
cot(Q) = x/y = 8/(-3√5) = -8/(3√5)
Complementary Angles
In a right triangle where R is the right angle, the angles Q and S are complementary.
Let S be the angle complementary to Q:
S = 90° - Q
Summary of Trigonometric Ratios
sin(Q) = (-3√5)/√(109)
cos(Q) = 8/√(109)
tan(Q) = (-3√5)/8
csc(Q) = -√(109)/(3√5)
sec(Q) = √(109)/8
cot(Q) = -8/(3√5)
Angles
Q is the angle formed by the radius with the positive x-axis.
R = 90° (right angle).
S = 90° - Q (complementary to Q).
Hope this helps! :)
Candi C.
Thank you!!10/04/24