Given Point
The given point is (-3√2, -13).
Calculating the Radius
The radius r is calculated using the formula:
r = √(x² + y²)
Substituting the values:
x = -3√2
y = -13
r = √((-3√2)² + (-13)²)
r = √(18 + 169) = √(187)
Trigonometric Ratios
1. Sine (sin):
sin(L) = y/r = (-13)/√(187)
2. Cosine (cos):
cos(L) = x/r = (-3√2)/√(187)
3. Tangent (tan):
tan(L) = y/x = (-13)/(-3√2) = 13/(3√2)
4. Cosecant (csc):
csc(L) = r/y = √(187)/(-13)
5. Secant (sec):
sec(L) = r/x = √(187)/(-3√2)
6. Cotangent (cot):
cot(L) = x/y = (-3√2)/(-13) = (3√2)/13
Complementary Angles
In a right triangle where M is the right angle, the angles L and N are complementary.
Let N be the angle complementary to L:
N = 90° - L
Summary of Trigonometric Ratios
sin(L) = (-13)/√(187)
cos(L) = (-3√2)/√(187)
tan(L) = 13/(3√2)
csc(L) = √(187)/(-13)
sec(L) = √(187)/(-3√2)
cot(L) = (3√2)/13
Angles
L is the angle formed by the radius with the positive x-axis.
M = 90° (right angle).
N = 90° - L (complementary to L).
I noticed you have a lot of questions listed similar to this, feel free to reach out if you'd like any tutoring!