J.R. S. answered 09/26/24
Ph.D. University Professor with 10+ years Tutoring Experience
I just wanted to add an alternate approach to that provided by @Anthony T.
Set up an ICE table using molar concentrations to visualize the changes taking place...
[SO2] = 0.2000 mol / 2.000 L = 0.1000 M
[O2] = 0.2000 mol / 2.000 L = 0.1000 M
[SO3] = 0.2000 mol / 2.000 L = 0.1000 M
2SO2 + O2 <==> 2SO3
0.1000....0.1000.....0.1000....Initial
-2x...........-x............+2x.........Change
0.0040......?..............?..........Equilibrium
Since we know that 0.1000 - 2x = 0.0040, we solve for x, which is x = 0.048. We can now fill in the equilibrium concentrations for all of the species present...
[SO2] = 0.0040 M
[O2] = 0.1000 - 0.048 = 0.052 M
[SO3] = 0.100 + 0.096 = 0.196 M
The equilibrium expression is
Keq = [SO3]2 / [SO2]2[O2]
Plugging in the equilibrium concentrations and solving for Keq, we have...
Keq = [0.196]2 / [0.0040]2[0.052]
Keq = 46173 = 4.617x104