Jose S. answered 06/03/24
Experienced tutor for high school and college math
Tori,
Since the base is a square and the area of a square (or a rectangle, which a square is a type of rectangle) is length times width, (lxW), the area of the base will be x times x, or x2.
This leaves us with the heigh of the prism. Let h represent the height. Since the total length of all 12 edges of the box is 144 in, then
4h+8x=144 (4 comes from the four vertical edges, each measuring h inches)
Also there are 8 edges of the squares top and bottom.
using algebra to solve for h (subtract 8x from both sides and then divide by 4), we get the height in terms of x: 36 − 2x.
since area of the square is x2 and the height is 36 − 2x, then the volume will be V(x)= x2(36 − 2x), which if we factor a 2 from the quantity (36 − 2x), we end up with the desired V(x) = 2 x2(18 − x).
The domain is a bit tricky. There is no way we can have a negative length, so the smallest x (which represents the length of one side of the base) can be is 0.
To come up with a higher bound, we need to look at how tall the prism can get. Since the height is 36 − 2x, then the largest x can be would be 18, otherwise, we end up with a negative height. A graph is also useful to see this relationship. In interval notation: (0,18), since I think a base of 0 length is a bit silly and if x=18, then h =0, which is also silly.