
Benjamin T. answered 02/09/24
Physics Professor, and Former Math Department Head
Note Double Check the Algebra
1.
Consider the spherical harmonics
Y12 = -1/2 √15/2/π sinθ cosθ eiφ
Y22 = 1/4 √15/2/π sin2θ e2iφ
Notice that ψ
ψ = -3/5 Y12 - 4/5 Y22
2.
Remember the orthogonality of the spherical harmonics.
∫∫ Yml Ym'l'* sinθ dθ dΦ = δmm'δll'
Then
∫∫ ψ ψ* sinθ dθ dΦ
= ∫∫(-3/5 Y12 - 4/5 Y22)(-3/5 Y12* - 4/5 Y22*) sinθ dθ dΦ
= ∫∫ (9/25 Y12 Y12* - 12/25 Y22 Y12* - 12/25 Y22* Y12 + 16/25 Y22 Y22*) sinθ dθ dΦ
= 9/25 δ11δ22 - 12/25 δ12δ22 - 12/25 δ21δ22 + 16/25 δ22δ22
= 9/25 + 16/25 = 1