tan(2x) = 2sin(x)cos(x)/[cos2(x) - sin2(x)]
Let R2 = X2 + Y2 where tan(x) = Y/X = -2/5,
and cos(x) = X/R > 0. So, R = √[ (2*2) + (5*5) ] =
√(4+25) = √29.
If tan(x) < 0 and cos(x) >0, then sin(x) must be -2/√29 or -2*√(29)/29 and cos(x) = 5*(29)/29.
Thus, tan(2x) = 2*(-2*√(29)/29)*(5*√(29)/29)/{ [(5*√(29)/29)]2 - [-2*√(29)/29)]2 }
= -20/{[25/29 - 4/29]}/29 = -20/21