Di,
A. Both of these problems use the same 3 variables and a single equation--
- frequency (in MHz--1.0 X10^6 cycles/second),
- wavelength (in nm -- 1.0X10^-9 meters)
- speed of the wave (m/s).
The three are related in a single equation: λ= v/f which can also be written λ ⋅ f= v
If you forget the equation, dimensions can help you remember the connection
wavelength (m/cycle) ⋅frequency (cycles/s) = velocity (m/s)
B. Once you have the foundational equations doing the two problems is relatively straightforward.
- Part a - you are solving for wavelength. Substitute both known variables into the equation. You can use either form, but the λ =f /v is most helpful.
λ = 4.0.x103 m/s / 3.2x106 s/cycle = 1.25x10-3 m/cycle = 1.25 x 10 -3 Hz = 1.3 Hz (2 sig. fig)
2. Part b. In this instance you are trying to find the frequency.
The second form of the equation is more helpful λ ⋅ f= v That can easily be dividing on both sides by λ which isolates f.
Assuming you do that f=v/λ Substitute your known variables, and convert nm to m.
f=( 3x108 m/s ) / (550 nm/cycle x 1.0-9 m/nm).
**Be careful to keep the whole wavelength in the denominator.
f= frequency = 5.45 x 10 17 cycles/sec.
With only one significant figure, the frequency is 5 x 10 17 Hz
C. Key things to pay attention to:
- What am I finding?
- Which form of the equation helps me get that most easily?
- What are the prefixes involved and what conversions are necessary?
- Do my units check out?