Let a = 67, b=12 and c=73 opposite angles A, B and C respectively. Use the law of cosines to find angle C:
c2 = a2 + b2 -2abcos(C)
2abcos(C) = a + b2 – c2
cos(C) = (a2 + b2 – c2)/2ab
cos(C) = (672 + 122 – 732)/(2*67*12)
cos(C) = -.04328
C = 115.6376º
Then using the law of sines you can get the other two angles B and A.
sin(C)/c = sin(B)/b
sin(B) = b*sin(C)/c
sin(B) = (12*sin(115.6376º))/73
sin(B) = 0.1482
B = 8.5219º
sin(C)/c = sin(A)/a
sin(A) = a*sin(C)/c
sin(A) = (67*sin(115.6376º))/73
sin(A) = 0.8274
A = 55.8305º
Sum of angles is:
A + B + C = 55.8305º + 8.5219º + 115.6376º = 179.99º ~ 180º
Rounding answers to nearest tenth digits gives :
A = 55.8º, B = 8.5º and C = 115.6º. (Note rounding C to 115.7º would give 180º as the sum.)