J.R. S. answered 05/24/23
Ph.D. University Professor with 10+ years Tutoring Experience
H2O(g) + Cl2O(g) <==> 2HOCl(g) .. balanced equation
moles H2O = 1.0 g x 1 mol H2O / 18 g = 0.0556 mols
moles Cl2O = 4.83 g x 1 mol / 86.9 = 0.0556 mols
H2O(g) + Cl2O(g) <==> 2HOCl(g)
.0556......0556...................0.............Initial
-x.............-x...................+2x.............Change
.0556-x....0.0556-x..........2x.............Equilibrium
K = 0.90 = [HOCl]2 / [H2O][Cl2O]
0.90 = (2x)2 / (0.0556-x)2
Now you'd use the quadratic equation and solve for x. Plug this value of x back into the Equilibrium line of the ICE table to find the equilibrium concentrations of all the species present. I got x = 0.018 so final equilibrium concentrations would b
[H2O] = 0.0556 - 0.18 = 0.0376 M
[Cl2O[ = 0.0376 M
[HOCl] = 2x0.018 = 0.036 M
b). Initial [HOCl] = 1 mol / 2 L = 0.5 M
H2O(g) + Cl2O(g) <==> 2HOCl(g)
.......0.............0...................0.5............Initial
.....+x............+x.................-2x............Change
.....x................x.................0.5-2x.......Equilibrium
K = [HOCl]2 / [H2O][HOCl]
0.90 = (0.5-2x)2 / x2
0.90x2 = 4x2 - 2x + 0.25
3.1x2 - 2x + 0.25 = 0
x = 0.169
Equilibrium concentrations are:
[H2O] = 0.169 M
[Cl2O] = 0.169 M
[HOCl] = 0.5 - 0.338 = 0.162 M
BE SURE TO CHECK ALL OF THE MATH
J.R. S.
05/24/23