Hi Sydney!
I'll show you how to do the first part of the first one.
1 cos x
Rewrite ∫ ( ----- ) dx as ∫ ( ----------) dx and substitute cos2 x with 1-sin2 x (pythagorean identity)
cos x cos2 x
so you have
cos x
∫ ( ------- ) dx
1-sin2 x
cos x
∫ ( --------------------) dx Factor -- difference of two squares A2 - B2
(1+sinx)(1-sinx)
Now, can do partial fraction expansion.
cos x A cosx B cosx
----------------------- = ----------- + ----------
(1+sinx)(1-sinx) (1+sinx) (1-sinx)
So then, just looking at the numerators:
cos x = (Acosx)(1-sinx) + (Bcosx)(1+sinx)
cos x = Acosx - Acosxsinx + Bcosx + Bcosxsinx
There is no cosxsinx term, so -Acosxsinx + Bcosxsinx = 0 or -A + B = 0
Acosx + Bcosx = 1cosx, so A + B = 1
Adding these two equations together gives 2B = 1 or B = 1/2.
It follows that A = 1/2 also.
So, our integral becomes
1 cos x 1 cosx
∫ [ -- ( -------- ) + -- ( ------- ) ] dx
2 1+sinx 2 1-sinx
1 cosx 1 cosx
-- ∫ ------- dx + --- ∫ -------- dx break up into separate integrals
2 1+sinx 2 1-sinx
let u1 = 1+sinx let u2 = 1-sinx
then du1 = cosxdx then du2 = -cosxdx or -du2 = cosxdx
1 du1 1 -du2
-- ∫ ---- + --- ∫ ----
2 u1 2 u2
1 1
-- ln |u1| - -- ln |u2| + C
2 2
1 1
-- ln |1+sinx| - -- ln |1-sinx| + C Substitute in for the u's
2 2
1
-- [ ln|1+sinx| - ln|1-sinx| ] + C Factor out a 1/2
2
1 1+sinx
-- [ ln | ------- | + C Properties of logarithms: Log a - Log b = Log (a/b)
2 1-sinx
Hint for the second part of #1. Rewrite 1/cosx as secx and then multiply by
secx + tanx
----------------
secx + tanx
then let u = secx + tanx
Jon M.
02/23/23