Patrick L. answered 6d
A chi-square test for homogeneity is needed to determine whether the proportion of people experiencing dizziness is the same across different pain medications at a 1% level of significance.
1.) (Null Hypothesis) H0: The proportion of dizziness experiences is the same for all pain medications.
(Alt. Hypothesis) H1: At least one medication has a different proportion of dizziness experiences.
2.) You will need to create the table to find the expected frequencies for each cell.
Expected Frequency (E) = (Row Total*Column Total) / Grand Total
E(Dizziness, Tordal) = (164*4146) / 8108 = 83.86
E(Dizziness, Placebo) = (164*1864) / 8108 = 37.7
E(Dizziness, Naproxen) = (164*1366) / 8108 = 27.63
E(Dizziness, Tylenol) = (164*387) / 8108 = 7.83
E(Dizziness, Advil) = (164*345) / 8108 = 6.98
E(No Dizziness, Tordal) = (7944*4146) / 8108 = 4,062.14
E(No Dizziness, Placebo) = (7944*1864) / 8108 = 1,826.3
E(No Dizziness, Naproxen) = (7944*1366) / 8108 = 1,338.37
E(No Dizziness, Tylenol) = (7944*387) / 8108 = 379.17
E(No Dizziness, Advil) = (7944*345) / 8108 = 338.022
O(Dizziness, Tordal) = 83
O(Dizziness, Placebo) = 32
O(Dizziness, Naproxen) = 36
O(Dizziness, Tylenol) = 5
O(Dizziness, Advil) = 8
O(No Dizziness, Tordal) = 4,063
O(No Dizziness, Placebo) = 1,832
O(No Dizziness, Naproxen) = 1,330
O(No Dizziness, Tylenol) = 382
O(No Dizziness, Advil) = 337
Find the difference, then square each one:
O - E(Dizziness, Tordal) = 83 - 83.86 = -0.86 ⇒ 0.7396
O - E(Dizziness, Placebo) = 32 - 37.7 = -5.7 ⇒ 32.49
O - E(Dizziness, Naproxen) = 36 - 27.63 = 8.37 ⇒ 70.0569
O - E(Dizziness, Tylenol) = 5 - 7.83 = -2.83 ⇒ 8.0089
O - E(Dizziness, Advil) = 8 - 6.98 = 1.02 ⇒ 1.0404
O - E(No Dizziness, Tordal) = 4,063 - 4,062.14 = 0.86 ⇒ 0.7396
O - E(No Dizziness, Placebo) = 1,832 - 1,826.3 = 5.7 ⇒ 32.49
O - E(No Dizziness, Naproxen) = 1,330 - 1,338.37 = -8.37 ⇒ 70.0569
O - E(No Dizziness, Tylenol) = 382 - 379.17 = 2.83 ⇒ 8.0089
O - E(No Dizziness, Advil) = 337 - 338.02 = -1.02 ⇒ 1.0404
Divide the square difference by the expected value for each cell:
(O - E)2 / E (Dizziness, Tordal) = 0.7396 / 83.86 = 0.008819
(O - E)2 / E (Dizziness, Placebo) = 32.49 / 37.7 = 0.8618
(O - E)2 / E (Dizziness, Naproxen) = 70.0569 / 27.63 = 2.5355
(O - E)2 / E (Dizziness, Tylenol) = 8.0089 / 7.83 = 1.02285
(O - E)2 / E (Dizziness, Advil) = 1.0404 / 6.98 = 0.1491
(O - E)2 / E (No Dizziness, Tordal) = 0.7396 / 4062.14 = 0.0001821
(O - E)2 / E (No Dizziness, Placebo) = 32.49 / 1826.3 = 0.01779
(O - E)2 / E (No Dizziness, Naproxen) = 70.0569 / 1338.37 = 0.05234
(O - E)2 / E (No Dizziness, Tylenol) = 8.0089 / 379.17 = 0.02112
(O - E)2 / E (No Dizziness, Advil) = 1.0404 / 338.02 = 0.003078
Add them up and you will get χ2 = 4.6725791.
The critical value from the table is degrees of freedom = (number of rows - 1) * (number of columns - 1). We have df = (2-1)*(5-1) = 1*4 = 4 and its p-value is 0.322559. Since the p-value is greater than 0.01, we fail to reject the null hypothesis. Therefore, the proportion of dizziness experiences is the same for all pain medications.