Hi Bryan!
Sometimes you can start with one side and
arrive at the other. In this case, you actually
need to simplify both sides.
I'll start with the right side first:
tanθ - sinθ sinθ
---------------- tanθ = -----
tanθ cosθ
sinθ sinθ
----- - -----
cosθ 1
----------------------
sinθ
------
cosθ
sinθ sinθ cosθ Get common
----- - ----- * ------ denominator
cosθ 1 cosθ of cosθ
---------------------------------
sinθ
------
cosθ
sinθ - sinθcosθ
----------------------
cosθ
--------------------------
sinθ
-----
cosθ
Multiply and cosθ cancels out
sinθ - sinθcosθ cosθ
----------------------- * -------
cosθ sinθ
Factor out sinθ. sinθ cancels out
sinθ (1 - cosθ)
-------------------
sinθ
(1- cosθ) or 1- cosθ
Now, simplify the left side
sin2θ
------------------ use pythagorean identity
1 + cosθ sin2θ + cos2θ = 1
sin2θ = 1- cos2θ
1-cos2θ
--------------- 1-cos2θ =(1-cosθ)(1+cosθ)
1 + cosθ difference of two squares
(1-cosθ)(1+cosθ)
------------------------ (1+cosθ) cancels
1 + cosθ
1-cosθ
So, both sides simplify to 1-cosθ.
Note** Raymond's solution is much shorter.
Here is another way to do it.