J.R. S. answered 11/03/22
Ph.D. University Professor with 10+ years Tutoring Experience
Clausius Clapeyron equation
ln (P2/P1) = -∆Hvap / R (1/T2 - 1/T1)
P1 = 92.0 torr
T1 = 23.0C + 273 = 296K
P2 = 257.0 torr
T2 = 45C + 273 = 318K
R = 8.314 J/Kmol
∆Hvap = ?
ln (257/92) = -∆Hvap / 8.314 (1/318 - 1/296)
1.027 = -∆Hvap / 8.314 (0.003145 - 0.003378)
1.027 = -∆Hvap / 8.314 (-0.000233)
1.027 = 0.000233 ∆Hvap / 8.314
∆Hvap = 36,646 J/mol = 36.6 kJ/mol
To find the normal boiling point of this liquid, we use the ∆Hvap calculated in the previous part and solve for temperature at 760 torr pressure.
ln (P2/P1) = -∆Hvap / R (1/T2 - 1/T1)
P1 = 92.0 torr
T1 = 296K
P2 = 760 torr
T2 = ?
∆Hvap = 36.6 kJ/mol
R = 8.314 J/Kmol = 0.008314 kJ/Kmol (note to change units to agree with those of ∆H)
ln (760/92) = -36.6 / 0.008314 (1/T2 - 1/296)
2.11 = -4402 (1/T2 - 0.003378)
2.11 = -4402/T2 + 14.87
T2 = 345K - 273 = 72ºC