J.R. S. answered 06/22/22
Ph.D. University Professor with 10+ years Tutoring Experience
Co3O4(s) → 3 Co(s) + 2 O2(g) ... ∆Hº = ?
Using Hess' Law, we can approach the problem as follows:
GIVEN:
eq.1: Co(s) + ½ O2(g) → CoO(s) ... ∆Hº = -108.1 kJ/mol
eq.2: 3 CoO(s) + ½ O2(g) → Co3O4(s) ... ∆Hº = -265.3 kJ/mol
PROCEDURE:
reverse eq.2: Co3O4(s) ==> 3 CoO(s) + ½ O2(g) ... ∆Hº = +265.3 kJ/mol
reverse & multiple eq.1 by 3: 3CoO(s) ==> 3Co(s) + 3/2 O2(g) ... ∆Hº = 3 x +108.1 kJ/mol = +324.3 kJ/mol
Add these together to get :
Co3O4(s) + 3CoO(s) ==> 3 CoO(s) + ½ O2(g) + 3Co(s) + 3/2 O2(g)
Combine and/or cancel like terms to get the final target equation:
Co3O4(s) ==> 2 O2(g) + 3Co(s) ... target equation
∆Hº = 265.3 kJ/mol + 324.3 kJ/mol = 589.6 kJ/mol