
Emily W. answered 01/08/22
Knowledge in Foundations of Variable Mathematics
x = money invested in account 1
y = money invested in account 2
Gain of 5% = + 0.05 = interest rate of account 1
Loss of 2% = -0.02 = interest rate of account 2
(to find a rate from a percent, you divide the percent by 100)
We will make a system of equations, with one showing the total money invested and the other showing the total interest earned or lost.
Equation 1: The total amount of money invested was 10,500
x + y = 10,500
You can imagine there are coefficients of 1 in front of the x and y.
1x + 1y = 10,500
Equation 2: The total interest gained from both account was 315
To find the interest gained by each account, we will multiply the amount invested by the interest rate. These together need to add up to a total of 315 gained in interest.
0.05x - 0.02y = 315
*notice how 0.02y is subtracting —> that is because we are losing interest*
Now we have a system of equations
1x + 1y = 10,500
0.05x - 0.02y = 315
To solve this system, we want to make one pair of x’s or y’s be equal and opposite coefficients. We can see that one of the y’s is negative and the other is positive —> it would be good to match the y’s because they are already opposites of each other. Now we just need to make the coefficients the same value.
I am going to turn 0.02 into 1 by multiplying some number to the entire bottom equation.
0.02 * ? = 1 divide by 0.02 on both sides
? = 50
We need to multiply everything in the second equation by 50 to turn 0.02 into 1
0.05x * 50 - 0.02y*50 = 315*50
2.5x - 1y = 15,750
Now let’s show our first equation with our new second equation
1x + 1y = 10,500
2.5x - 1y = 15,750
If we add the columns down, the +1y and -1y cancel out and we can solve for x. Add the x terms down and the totals down.
3.5x = 26,250 divide by 3.5 on both sides
x = 7,500
We invested $7,500 into the first account, which had 5% gain
Plug back into the first equation to find y
x + y = 10,500
7,500 + y = 10,500 subtract 7,500 from both sides
y = 3,000
We invested $3,000 into the second account, which had 2% loss
Answers: x = 7500 y = 3000