°This is an ambiguous case. For two triangle solution, the following conditions have to hold:
1) The given must be in this order: Side-Side-Angle (SSA) either going clockwise or counterclockwise.
h = height of the triangle.
a, b, c are the sides.
∠B is one of its angles.
2) h < b < c
h = c sin 30º
h = 7 (0.5) = 3.5
3.5 < 6 < 7
------
Since it satisfies all the conditions, therefore we have two triangle solutions.
ΔABC1 and ΔABC2
1)For ΔABC2, use Law of Sine:
b / sin B = c / sin C
6 / sin 30º = 7 / sin C
sin C = 7*sin 30º / 6
m∠C = sin-1(7*sin 30º / 6)
m∠C2 ≈ 35.69º
The sum of all angles is 180 degrees:
m∠A = 180 -m∠B - m∠C
m∠A = 180 - 30 - 35.69
m∠A ≈ 114.31°
For the third side (A), Law of Sine again:
a / sin A = b / sin B
a = 6*sin 114.31°/ sin 30°
a ≈ 10.94
2)For ΔABC1, Solve for angle C1 first:
m∠C = 180 -35.69
m∠C1 ≈ 144.31°
m∠A ≈ 180 - 30 - 144.31
m∠A ≈ 5.69°
a / sin A = b / sin B
a = 6* sin 5.69° / sin 30°
a ≈ 1.19