
Yefim S. answered 10/25/21
Math Tutor with Experience
9(x2 + 16x + 64) - 576 - 16(y2 + 20y + 100) + 1600 - 1600 = 0; 9(x + 8)2 - 16(y + 10)2 = 576;
(x + 8)2/16 - (y + 10)2/36 = 1;
Hyperbola: center at point (- 8, - 10); a = 4; b = 6, c2 = 16 + 36 = 52; c = 2√13;
Foci: (- 2√13 - 8, - 10) and (2√13 - 8, - 10);
For parabola: y = 6 - 10 = - 4; y = - 4 is directrix; Now 2p = - 10 - (- 4) = - 6; p = - ;
Parabola with focus (- 2√13 - 8, - 10 vertex at point (- 2√13 - 8, - 7) and equation (x + 2√13 + 8)2 = - 12(y + 7)
Parabola with focus (2√13 - 8, - 10 vertex at point (2√13 - 8, - 7) and equation (x - 2√13 + 8)2 = - 12(y + 7)