
Tamara J. answered 03/21/13
Math Tutoring - Algebra and Calculus (all levels)
∫ cos2x·sin3x dx = ∫ cos2x·sinx·sin2x dx
Recall: sin2x + cos2x = 1 ==> sin2x = 1 - cos2x
∫ cos2x·sinx·(1 - cos2x) dx = ∫ (cos2x·sinx - cos4x·sinx) dx
= ∫ cos2x·sinx dx - ∫ cos4x·sinx dx
Using u-substitution, let: u = cosx , thus, du = -sinx dx
==> ∫ cos2x·sinx dx = ∫ -1·cos2x·(-1·sinx dx) = ∫ -(u)2·(du) = ∫ -u2 du
= -(u)3/3 = -(cosx)3/3 = -cos3x/3
==> ∫ cos4x·sinx dx = ∫ -1·cos4x·(-1·sinx dx) = ∫ -(u)4·(du) = ∫ -u4 du
= -(u)5/5 = -(cosx)5/5 = -cos5x/5
∫ cos2x·sinx dx - ∫ cos4x·sinx dx = (-cos3x/3) - (-cos5x/5)
= -cos3x/3 + cos5x/5 = cos5x/5 - cos3x/3